A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations
نویسندگان
چکیده
In this report, a charge preserving numerical resolution of the 1D Vlasov-Ampère equation is achieved, with a forward Semi-Lagrangian method introduced in [10]. The Vlasov equation belongs to the kinetic way of simulating plasmas evolution, and is coupled with the Poisson’s equation, or equivalently under charge conservation, the Ampère’s one, which self-consistently rules the electric field evolution. In order to ensure having proper physical solutions, it is necessary that the scheme preserves charge numerically. B-Spline deposition will be used for the interpolation step. The solving of the characteristics will be made with a Runge-Kutta 2 method and with a Cauchy-Kovalevsky procedure.
منابع مشابه
A total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملNumerical High-Field Limits in Two-Stream Kinetic Models and 1D Aggregation Equations
Numerical resolution of two-stream kinetic models in strong aggregative setting is considered. To illustrate our approach, we consider an 1D kinetic model for chemotaxis in hydrodynamic scaling and the high field limit of the Vlasov-Poisson-Fokker-Planck system. A difficulty is that, in this aggregative setting, weak solutions of the limiting model blow up in finite time, therefore the scheme s...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کامل